Abstract

Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difficulty. This study simulated inventory records by using the dynamics inventory management system. Four deep neural network models trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network (DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction accuracy with the least square error of 0.14%. The results concluded that the complexity of the model was not directly related to the prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics prediction, this study contributed to the academia. The research results provided useful advice for companies’ planned production and inventory officers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories in warehouses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.