Abstract

In deep neural network (DNN) training, network weights are iteratively updated with the weight gradients that are obtained from stochastic gradient descent (SGD). Since SGD inherently allows gradient calculations with noise, approximating weight gradient computations have a large potential of training energy/time savings without degrading accuracy. In this paper, we propose an input-dependent approximation of the weight gradient for improving energy efficiency of training process. Considering that the output predictions of network (confidence) changes with training inputs, the relation between the confidence and the magnitude of weight gradient can be efficiently exploited to skip the gradient computations without accuracy drop, especially for high confidence inputs. With a given squared error constraint, the computation skip rates can be also controlled by changing the confidence threshold. The simulation results show that our approach can skip 72.6% of gradient computations for CIFAR-100 dataset using ResNet-18 without accuracy degradation. Hardware implementation with 65nm CMOS process shows that our design achieves 88.84% and 98.16% of maximum per epoch training energy and time savings, respectively, for CIFAR-100 dataset using ResNet-18 compared to state-of-the-art training accelerator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.