Abstract

This paper addresses the design of a robust prediction-based controller for linear systems with both input and state delays. We extend the usual prediction-based scheme to state delay and prove its robustness to sufficiently small delay mismatches. Our approach is grounded on the linking of two recently proposed infinite-dimensional techniques: a Complete-Type Lyapunov functional, which enables state delay systems stability analysis, and tools from the field of Partial Differential Equations, reformulating the delays as transport equations and introducing a tailored backstepping transformation. We illustrate the merits of the proposed technique with simulations on a process dryer system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call