Abstract

Background and objectivesPsoriasis is an independent risk factor for coronary heart disease. It is important for predicting the complications of coronary heart disease in patients with psoriasis. MethodsIn this study, related cases were collected from the case system of Qingdao University, and commonly used laboratory indicators were extracted. Artificial neural network (ANN) and logistics regression analysis were used to learn to distinguish psoriasis patients, coronary heart disease patients, and psoriasis patients with coronary heart disease. We identified independent risk factors for coronary heart disease in psoriasis patients that exacerbate coronary heart disease symptoms in patients with psoriasis. FindingsAnalysis shows that the accuracy of the ANN model was higher than 79%. It was determined that age, chlorinated, phosphorus, magnesium, low-density lipoprotein, triglycerides, high density lipoprotein and total cholesterol are independent risk factors for coronary heart disease in patients with psoriasis. Similarly, gender, age, chlorinated, magnesium, triglycerides, and high density lipoprotein are risk factors that exacerbate coronary heart disease symptoms in patients with psoriasis. InterpretationThe presented approach is a valuable tool for identifying psoriasis patients, coronary heart disease patients, and psoriasis patients with coronary heart disease. It can also serve as a support tool clinicians in the diagnostic process, by providing an outstanding support in the diagnostics prevention of coronary heart disease in psoriasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.