Abstract

To develop and validate a nomogram to predict 1-, 2-, and 5-year survival in patients with non-small-cell lung cancer (NSCLC) by combining optimised radiomics features, clinicopathological factors, and conventional image features extracted from three-dimensional (3D) computed tomography (CT) images. A total of 172 patients with NSCLC were selected to construct the model, and 74 and 72 patients were selected for internal validation and external testing, respectively. A total of 828 radiomics features were extracted from each patient's 3D CT images. Univariable Cox regression and least absolute shrinkage and selection operator (LASSO) regression were used to select features and generate a radiomics signature (radscore). The performance of the nomogram was evaluated by calibration curves, clinical practicability, and the c-index. Kaplan-Meier (KM) analysis was used to compare the overall survival (OS) between the two subgroups. The radiomics features of the NSCLC patients correlated significantly with survival time. The c-indexes of the nomogram in the training cohort, internal validation cohort, and external test cohort were 0.670, 0.658, and 0.660, respectively. The calibration curves showed that the predicted survival time was close to the actual survival time. Decision curve analysis shows that the nomogram could be useful in the clinic. According to KM analysis, the 1-, 2- and 5-year survival rates of the low-risk group were higher than those of the high-risk group. The nomogram, combining the radscore, clinicopathological factors, and conventional CT parameters, can improve the accuracy of survival prediction in patients with NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call