Abstract
This research focuses on prediction of the rolling resistance coefficient of an agriculture tyre using finite element analysis (FEA) technique, and Bekker and Wismer-Luth models. The tyre-soil interaction is modelled using FEA and smoothed-particle hydrodynamics (SPH) techniques in Visual Environment's PAM-Crash software and validated based on experimental results. A single-wheel tester along with a controlled soil bin at Urmia University, Iran is used to investigate the effect of a tyre's multi-pass and vertical load on the rolling resistance coefficient of an off-road tyre. In order to calculate the rolling resistance of Bekker model, a bevameter device is installed on a carriage moving on clayey-loam soil and a digital penetrometer is used for obtaining the output of Wismer-Luth model. Analysis of experimental data shows that rolling resistance coefficient increases as the vertical load increases and decreases with each pass of tyre. These results are used to compare and evaluate the above-mentioned methods. The results of this study will be used in further research on the interaction between a tyre and soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Vehicle Systems Modelling and Testing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.