Abstract

Cancer metastasis is one of the main causes of cancer progression and difficulty in treatment. Genes play a key role in the process of cancer metastasis, as they can influence tumor cell invasiveness, migration ability and fitness. At the same time, there is heterogeneity in the organs of cancer metastasis. Breast cancer, prostate cancer, etc. tend to metastasize in the bone. Previous studies have pointed out that the occurrence of metastasis is closely related to which tissue is transferred to and genes. In this paper, we identified genes associated with cancer metastasis to different tissues based on LASSO and Pearson correlation coefficients. In total, we identified 45 genes associated with bone metastases, 89 genes associated with lung metastases, and 86 genes associated with liver metastases. Through the expression of these genes, we propose a CNN-based model to predict the occurrence of metastasis. We call this method MDCNN, which introduces a modulation mechanism that allows the weights of convolution kernels to be adjusted at different positions and feature maps, thereby adaptively changing the convolution operation at different positions. Experiments have proved that MDCNN has achieved satisfactory prediction accuracy in bone metastasis, lung metastasis and liver metastasis, and is better than other 4 methods of the same kind. We performed enrichment analysis and immune infiltration analysis on bone metastasis-related genes, and found multiple pathways and GO terms related to bone metastasis, and found that the abundance of macrophages and monocytes was the highest in patients with bone metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.