Abstract

The formation of martensite at a notch tip in a CuAlNi shape memory alloy loaded in tension is studied. The geometry of the initial martensite plate to form at the notch is predicted theoretically, using the stress field at a crack tip in an anisotropic linearly elastic body together with a listing of all possible austenite–martensite interfaces from the Crystallographic Theory of Martensite (CTM). The stress field and CTM analyses are combined through a selection criterion based on computing the work available from the stress field to transform to each austenite–martensite interface. The resulting predictions are compared to experimentally observed microstructures in notched specimens of single crystal CuAlNi loaded in tension for eight notch orientations. Results show that the available work criterion accurately predicts the orientation, number and order of the austenite–martensite interfaces that initially form near a crack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.