Abstract

Surfactant enhanced aquifer remediation (SEAR) had previously been thought to require a capillary barrier below the contaminated zone to prevent the vertical migration of a microemulsion containing solubilized DNAPL. This paper shows the vertical migration of the dense microemulsion is described and predicted by the value of three dimensionless scaling groups. Embedded within these scaling groups are four design parameters. The value of these parameters can be manipulated in order to reduce the amount of vertical migration anticipated for a given remediation design. Plots have been constructed that illustrate the relationship between vertical migration and the value of the scaling groups; such plots can be used to predict vertical migration and to determine appropriate screen intervals of extraction wells to ensure full capture of the contaminants. This predictive capability has been verified in laboratory experiments. Predicted migration of the microemulsion agreed within about 2% of that observed. Development of the scaling groups is presented, remediation design implications are discussed, and laboratory verification is shown. Additional discussion of the laboratory work is given in a companion paper [Kostarelos, K., Pope, G.A., Rouse, B.A., Shook, G.M., 1998. A new concept: the use of neutrally-buoyant microemulsions for DNAPL remediation, J. Contam. Hydro., this edition].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.