Abstract
A novel process is being developed for metal recovery from waste electrical and electronic equipment (WEEE) and involving a leach reactor coupled to an electrochemical reactor. Metals such as Ag, Au, Cu, Pb, Pd, Sn, etc. are dissolved from shredded WEEE in an acidic aqueous chloride electrolyte by oxidizing them with aqueous dissolved chlorine species. In the electrochemical reactor: (i) chlorine is generated at the anode for use as the oxidant in the leach reactor, and, simultaneously, (ii) at the cathode, the dissolved metals are electrodeposited from the leach solution. The Butler–Volmer equation was used to provide predictions of the electrode potential dependences of partial current densities, and hence total current densities, current efficiencies and alloy compositions, for acidic aqueous chloride electrolytes containing Ag(I), Au(III), Cu(II), Fe(III), Pb(II), Pd(IV) and Sn(IV) species, together with dissolved chlorine. With judicious choice of kinetic parameters, the predicted total current density—electrode potential behaviour of such solutions was in good agreement with experimental data for a rotating Pt disc electrode. Reduction of dissolved chlorine at a Pt rotating disc electrode exhibited mass transport controlled behaviour, in agreement with Levich's equation over the potential range 0.3–0.9 V (SHE). This could form the basis of a linear sensor, possibly using a microelectrode for measurement and control of the dissolved chlorine concentration in the efflux of leach reactors and inlet to cathodes of the electrowinning reactors, in the envisaged process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.