Abstract
Personalized teaching and classified training promote each student to develop in the most suitable direction. The studies on classified student training (CST) mainly target the objects of CST, which refers to the classified training of underachievers and achievers, or the classified training of different groups of high-quality talents like doctoral students and master candidates. However, there are few research results on the implementation or quality forecast of CST. To fill up the gap, this paper explores the prediction and management of the CST quality based on an improved neural network. Firstly, a cognitive diagnosis model for CST was established to realize targeted group learning. Thereafter, an evaluation index system (EIS) was constructed for student learning quality. Next, a prediction model was built based on improved backpropagation neural network (BPNN), and the particle swarm optimization (PSO) was called to optimize the weights and thresholds of the neural network. The effectiveness of our model was proved through experiments. The relevant findings provide impetus to the timely update of CST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Emerging Technologies in Learning (iJET)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.