Abstract

A nonisothermal, two-phase model for polymer electrolyte fuel cells is validated against the experimental data of in-plane current density profiles. Overall, good agreement is achieved between predicted and measured current density distributions between the channel and land with submillimeter resolution. Numerical simulations clearly show that the in-plane current profile results from the interplay between the ohmic control and mass transport control, both of which depend strongly on the two-phase water transport along the in-plane direction. Under relatively dry and large stoichiometric conditions, the current density peak is seen to shift from under the land to under the channel with increasing average current density, signifying control by membrane resistance at low current densities but by oxygen diffusion at high current densities. Finally, the validated model reveals the dramatic influence of the channel/land width and gas diffusion layer compression on the in-plane current density profile, thus underscoring the necessity to match these two key parameters in experimental measurements of in-plane current distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.