Abstract

Abstract The mechanical properties, such as strength and stiffness, of epoxy-based composites containing MWCNTs were experimentally and theoretically investigated. The classical analytic homogenization approach, called the Mori-Tanaka model, was firstly modified and reported to predict strength properties for composites containing multiple heterogeneities. In the modified Mori-Tanaka micromechanical strength modeling, the composites were considered as a two-phase simple model, as well as multiple heterogeneity case. The values obtained here were compared to experimentally measured data. The specimens reinforced with heterogeneities such as multi-walled carbon nanotubes (MWCNTs) were mainly fabricated and tested to measure the strength and stiffness of epoxy-based composites. When comparing the experimentally measured data of those composites with the predicted values obtained from the modified micromechanics models, it was confirmed that the developed approach successfully captures the effect of different types of heterogeneity on the resulting strength and stiffness of composites containing different geometrized nanofillers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.