Abstract
Estimation and mapping carbon storage in the soil is currently an important topic; thus, the knowledge of the distribution of carbon content with depth is essential. This paper examines the use of a negative exponential profile depth function to describe the soil carbon data at different depths, and its integral to represent the carbon storage. A novel method is then proposed for mapping the soil carbon storage in the Lower Namoi Valley, NSW. This involves deriving pedotransfer functions to predict soil organic carbon and bulk density, fitting the exponential depth function to the carbon profile data, deriving a neural network model to predict parameters of the exponential function from environmental data, and mapping the organic carbon storage. The exponential depth function is shown to fit the soil carbon data adequately, and the parameters also reflect the influence of soil order. The parameters of the exponential depth function were predicted from land use, radiometric K, and terrain attributes. Using the estimated parameters we map the carbon storage of the area from surface to a depth of 1 m. The organic carbon storage map shows the high influence of land use on the predicted storage. Values of 15–22 kg/m2 were predicted for the forested area and 2–6 kg/m2 in the cultivated area in the plains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.