Abstract

The need for composite material has increased in various sectors due to the technological developments and requirement of complex shapes in the manufacturing sectors. Metal matrix composites are the most widely used composite materials. Due to the presence of abrasive reinforcing particles, conventional machining of these causes severe tool wear and hence reduces the life of the cutting tool. This difficulty can be overcome by using an advanced machining technique. One such advanced machining technique is Wire Electrical Discharge Machining (WEDM). WEDM is a thermal machining method used for cutting any conductive materials and capable of precisely cutting parts of hard materials with complex shapes. This paper focuses on the prediction and comparison of vision parameter of surface roughness during wire electrical discharge machining of Al-6%Si3N4 and Al-10%Si3N4 composite materials. Stylus instruments are widely used for measuring surface roughness of machined components, which have limited flexibility in handling various machined parts. Due to high resolution, reliability, and ease of automatic processing of data, vision systems are recently being exploited for various measurements. Using the machine vision system, the surface images of machined specimens were acquired. Based on the analysis of the distribution of light intensity of a rough surface, the surface roughness (Ga) of a machined component is measured. Surface roughness prediction was carried out successfully for the two composite materials using Artificial Neural Networks (ANN). From the results, it was observed that, measured and predicted vision parameters of surface roughness (Ga) values correlated well with ANN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.