Abstract

PurposeWith the rapid advancement in the automotive industry, the friction coefficient (FC), wear rate (WR) and weight loss (WL) have emerged as crucial parameters to measure the performance of automotive braking systems, so the FC, WR and WL of friction material are predicted and analyzed in this work, with an aim of achieving accurate prediction of friction material properties.Design/methodology/approachGenetic algorithm support vector machine (GA-SVM) model is obtained by applying GA to optimize the SVM in this work, thus establishing a prediction model for friction material properties and achieving the predictive and comparative analysis of friction material properties. The process parameters are analyzed by using response surface methodology (RSM) and GA-RSM to determine them for optimal friction performance.FindingsThe results indicate that the GA-SVM prediction model has the smallest error for FC, WR and WL, showing that it owns excellent prediction accuracy. The predicted values obtained by response surface analysis are closed to those of GA-SVM model, providing further evidence of the validity and the rationality of the established prediction model.Originality/valueThe relevant results can serve as a valuable theoretical foundation for the preparation of friction material in engineering practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.