Abstract

Direct laser fabrication (DLF) is a process for the manufacture of functional parts directly from powder injected in a laser beam. Deposition of 316L stainless steel powder on a steel substrate is carried out using a 700W fiber laser for one module. One problem for this process is the control of the building structure dimensions. In this study a mathematical model implemented in the software Mathematica 8© is used to predict the clad cross-section dimensions and obtain an analytical description of the clad geometry. We experimentally notice that the cross-section shape is a disk due to the surface tension forces. Analytical relationships are established between the radius and the center of the disk in one hand and the process parameters in the other hand. This way we show that we can reproduce the laser track geometry in all the area experimentally explored. A number of laser tracks are deposited using a varying process parameter combination in order to compare with our calculation results. This analytical description of the clad geometry could be used in order to improve the calculation quickness of the thermal field induced by the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.