Abstract
The formation of internal cracks in continuously cast slabs is mainly attributed to the strain status and microsegregation near the solidifying front of the slabs. Based on this understanding, the effects of the strain status at solidifying front and the chemical composition of liquid steel on the internal cracks were studied using a strain analysis model and a microsegregation model developed in the present study. The tensile strains at the solidifying front caused by bulging, unbending, and misalignment of supporting rolls in a four-point-unbending bow caster were calculated. The roll gap in the caster was measured for the calculation of the strains caused by the misalignment of the supporting rolls. The calculated strain status near the solidifying front was used to predict the internal cracks. Critical strains based on some experimental data were adopted as the crack criteria. Sulfur prints of the slab transverse sections were used to verify the model predictions. The enrichment of chemical compositions in the interdendritic liquid and its effect on the freezing temperature of the liquid were studied with the microsegregation model, in which the transition of ferritic/austenitic solidification and the precipitation of MnS were taken into account. S and P were revealed to strongly accumulate at the columnar grain boundaries, and the segregation of P increases significantly when C content increases from 0.1 % to 0.2 %. With the accumulation of P and S in the interdendritic liquid, the freezing temperature of the liquid decreases obviously, thus the internal crack tendency is greatly increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.