Abstract

BackgroundExisting methods for predicting protein solubility on overexpression in Escherichia coli advance performance by using ensemble classifiers such as two-stage support vector machine (SVM) based classifiers and a number of feature types such as physicochemical properties, amino acid and dipeptide composition, accompanied with feature selection. It is desirable to develop a simple and easily interpretable method for predicting protein solubility, compared to existing complex SVM-based methods.ResultsThis study proposes a novel scoring card method (SCM) by using dipeptide composition only to estimate solubility scores of sequences for predicting protein solubility. SCM calculates the propensities of 400 individual dipeptides to be soluble using statistic discrimination between soluble and insoluble proteins of a training data set. Consequently, the propensity scores of all dipeptides are further optimized using an intelligent genetic algorithm. The solubility score of a sequence is determined by the weighted sum of all propensity scores and dipeptide composition. To evaluate SCM by performance comparisons, four data sets with different sizes and variation degrees of experimental conditions were used. The results show that the simple method SCM with interpretable propensities of dipeptides has promising performance, compared with existing SVM-based ensemble methods with a number of feature types. Furthermore, the propensities of dipeptides and solubility scores of sequences can provide insights to protein solubility. For example, the analysis of dipeptide scores shows high propensity of α-helix structure and thermophilic proteins to be soluble.ConclusionsThe propensities of individual dipeptides to be soluble are varied for proteins under altered experimental conditions. For accurately predicting protein solubility using SCM, it is better to customize the score card of dipeptide propensities by using a training data set under the same specified experimental conditions. The proposed method SCM with solubility scores and dipeptide propensities can be easily applied to the protein function prediction problems that dipeptide composition features play an important role.AvailabilityThe used datasets, source codes of SCM, and supplementary files are available at http://iclab.life.nctu.edu.tw/SCM/.

Highlights

  • Existing methods for predicting protein solubility on overexpression in Escherichia coli advance performance by using ensemble classifiers such as two-stage support vector machine (SVM) based classifiers and a number of feature types such as physicochemical properties, amino acid and dipeptide composition, accompanied with feature selection

  • We propose a novel scoring card method (SCM) by using dipeptide composition only to estimate solubility scores for predicting protein solubility from sequences

  • The results reveal that the SCM and SVM methods using the same dipeptide composition features are comparable

Read more

Summary

Introduction

Existing methods for predicting protein solubility on overexpression in Escherichia coli advance performance by using ensemble classifiers such as two-stage support vector machine (SVM) based classifiers and a number of feature types such as physicochemical properties, amino acid and dipeptide composition, accompanied with feature selection. Many proteins are produced in the form of insoluble aggregation that is a major obstruct for a lot of experiments, and the misfolded aggregation is called inclusion body. Many proteins form inclusion bodies when overexpressed in Escherichia coli (E. coli). These insoluble proteins need be solubilized and refolded to obtain functional proteins [1]. Researchers usually do their possible efforts to get the soluble forms of proteins by regulating experimental conditions, including culture temperature, co-expression with solubilityenhanced proteins, efficient vectors, and host strains. There is a significant need for highly consistent and accurate methods for predicting solubility of proteins from sequences [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call