Abstract
Bending load is often encountered in engineering applications, but it is less studied for 3D-printed continuous fibre–reinforced composites (CFRC). We present the flexural properties of 3D-printed composites as a function of layer order and matrix fill ratio. We applied Classic Laminate Theory to estimate the flexural modulus and showed that the Kerner-Hashin model is suitable for taking voids into account when calculating the elastic properties of the matrix layer. Using optical microscopic analysis, we identified the main defect sources of 3D-printed CFRC structures, such as voids, fibre waviness, fragmentation and poor bonding between laminas. By performing failure analysis based on the Fibre Bundle Cell method, we found that the use of top/bottom-type reinforcement instead of alternating layering will increase the reliability of the 3D-printed composites under bending load. Furthermore, the failure process will be more gradual and cover higher load levels, which increases safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.