Abstract

EMC spectrum analyzers are popularly used for electromagnetic interference (EMI) measurement in power electronics systems. Depending on the specifications of EMI standards, the EMI measurement could be very time consuming. Conventionally, the fast Fourier transform is used to derive the EMI spectrum from the measured time-domain waveforms. However, these results may not agree with the measurement results from spectrum analyzers, and sometimes the difference could be significant. In this paper, a technique to quickly and accurately predict and analyze the EMI spectrum from time-domain waveforms is proposed. The technique is developed based on the spectrum analyzer's operating principle and the requirements of EMI standards. The EMI spectra of three modulation schemes are also analyzed. Theoretical analysis, simulations, and experiments were all conducted. The predicted peak, quasi-peak, and average EMI matches the measured EMI in whole conductive frequency range. The developed technique can accurately predict EMI using much shorter time than conventional EMC spectrum analyzers and it saves cost of expensive spectrum analyzers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.