Abstract

To better understand the mechanism of development of lateral resistance of single drilled piles installed in improved soil profile. Side-by-side static load tests were performed on the piles installed in virgin soil profile and improved soil profile with the soil ahead of the pile cement-improved. Parametric three-dimensional finite element analyses were performed to study the effect of grouting radius. More soils at the side of piles make a critical contribution to resisting lateral loads due to the influence of improved soil ahead of the pile. A new hyperbolic p–y function that modifies the initial subgrade modulus and the ultimate lateral soil resistance is proposed based on the finite element analyses to account for the effect of the cement improvement. The proposed p–y method is capable of predicting laterally loaded pile response in cement-improved soil profiles as measured in the static load tests. The accuracy of the proposed p–y model is appropriate as shown by comparing measured and calculated the lateral behaviour of the single pile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.