Abstract
Genomic prediction has the potential to significantly increase the rate of genetic gain in tree breeding programs. In this study, a clonally replicated population (n = 2063) was used to train a genomic prediction model. The model was validated both within the training population and in a separate population (n = 451). The prediction abilities from random (20% vs 80%) cross validation within the training population were 0.56 and 0.78 for height and stem form, respectively. Removal of all full-sib relatives within the training population resulted in ∼50% reduction in their genomic prediction ability for both traits. The average prediction ability for all 451 individual trees was 0.29 for height and 0.57 for stem form. The degree of genetic linkage (full-sib family, half sib family, unrelated) between the training and validation sets had a strong impact on prediction ability for stem form but not for height. A dominant dwarfing allele, the first to be reported in a conifer species, was discovered via genome-wide association studies on linkage Group 5 that conferred a 0.33-m mean height reduction. However, the QTL was family specific. The rapid decay of linkage disequilibrium, large genome size, and inconsistencies in marker-QTL linkage phase suggest that large, diverse training populations are needed for genomic selection in Pinus taeda L.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.