Abstract
This study aimed to investigate the prediction ability for growth and maternal traits using different low-density customized SNP arrays selected by informativeness and distribution of markers across the genome employing single-step genomic BLUP (ssGBLUP). Phenotypic records for adjusted weight at 210 and 450days of age were utilized. A total of 945 animals were genotyped with high-density chip, and 267 individuals born after 2008 were selected as validation population. We evaluated 11 scenarios using five customized density arrays (40k, 20k, 10k, 5k and 2k) and the HD array was used as desirable scenario. The GEBV predictions and BIF (Beef Improvement Federation) accuracy were obtained with BLUPF90 family programs. Linear regression was used to evaluate the prediction ability, inflation, and bias of GEBV of each customized array. An overestimation of partial GEBVs in contrast with complete GEBVs and increase of BIF accuracy with the density arrays diminished were observed. For all traits, the prediction ability was higher as the array density increased and it was similar with customized arrays higher than 10k SNPs. Level of inflation was lower as the density array increased of and was higher for MW210 effect. The bias was susceptible to overestimation of GEBVs when the density customized arrays decreased. These results revealed that the BIF accuracy is sensible to overestimation using low-density customized arrays while the prediction ability with least 10,000 informative SNPs obtained from the Illumina BovineHD BeadChip shows accurate and less biased predictions. Low-density customized arrays under ssGBLUP method could be feasible and cost-effective in genomic selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.