Abstract
A low-cost titanium alloy (Ti–5Al–2Fe–3Mo wt.%) was designed and fabricated by blended elemental powder metallurgy (BEPM) process. The high-temperature deformation behavior of the powder metallurgical Ti–5Al–2Fe–3Mo wt.% (PM-TiAlFeMo) alloy was investigated by hot compression tests at temperatures ranging from 700 to 1000 °C and strain rates ranging from 0.001 to 10 s−1. The flow curves were employed to develop the Arrhenius-type constitutive model in consideration of effects of deformation temperature, strain rate, and flow stress. The value of activation energy (Q) was determined as 413.25 kJ/mol. In order to describe the workability and predict the optimum hot processing parameters of the PM-TiAlFeMo alloy, the processing map has been established based on the true stress–true strain curves and power dissipation efficiency map. Moreover, microstructure observations match well with the analyses about deformation mechanisms, revealing that dynamic recovery and dynamic recrystallization are dominant softening mechanisms at relatively high temperatures. However, the kinking and breaking of microstructure prefer to occur at relatively low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.