Abstract

Ultra-reliable, low-latency wireless communication is essential to enable critical and interactive applications. The cooperative communication schemes for such ultra-reliable communication must harvest multi-user diversity to achieve their specifications. The underlying low-latency space-time codes for a large number of users (> 10) place burdens on practical implementations due to the large number of simultaneous relays they must use. To address this, we propose an adaptive relay selection technique that selects a small set of good relays, instead of using every available radio to relay. Using our simple relay-selection schemes, we can support a network with 30 nodes requiring system failure probability under 10 - 9and 2ms latency with only 3 simultaneously active relays per message. In contrast, in the absence of adaptive relay selection, we must rely on 13 relays to achieve the same reliability. To arrive at such relay selection schemes, we revisit the fading dynamics of wireless channels in the context of ultra-high reliability. Contrary to what has been claimed in the literature, we find that standard Rayleigh fading processes are not bandlimited. However, these fading processes are fairly predictable on the short time scales of the regime of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.