Abstract

Abstract Energy traders and decision-makers need accurate wind power forecasts. For this purpose, numerical weather predictions (NWPs) are often statistically postprocessed to correct systematic errors. This requires a dataset of past forecasts and observations that is often limited by frequent NWP model enhancements that change the statistical model properties. Reforecasts that recompute past forecasts with a recent model provide considerably longer datasets but usually have weaker setups than operational models. This study tests the reforecasts from the National Oceanic and Atmospheric Administration (NOAA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) for wind power predictions. The NOAA reforecast clearly performs worse than the ECMWF reforecast, the operational ECMWF deterministic and ensemble forecasts, and a limited-area model of the Austrian weather service [Zentralanstalt für Meteorologie und Geodynamik (ZAMG)]. On the contrary, the ECMWF reforecast has, of all tested models, the smallest squared errors and one of the highest financial values in an energy market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.