Abstract

Predicting users political party in social media has important impacts on many real world applications such as targeted advertising, recommendation and personalization. Several political research studies on it indicate that political parties' ideological beliefs on sociopolitical issues may influence the users political leaning. In our work, we exploit users' ideological stances on controversial issues to predict political party of online users. We propose a collaborative filtering approach to solve the data sparsity problem of users stances on ideological topics and apply clustering method to group the users with the same party. We evaluated several state-of-the-art methods for party prediction task on debate.org dataset. The experiments show that using ideological stances with Probabilistic Matrix Factorization (PMF) technique achieves a high accuracy of 88.9% at 22.9% data sparsity rate and 80.5% at 70% data sparsity rate on users' party prediction task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.