Abstract
The emergence of sensor-based Internet of Things (IoT) monitoring technologies have paved the way for conducting large-scale naturalistic driving studies, where continuous kinematic driver-based data are generated, capturing crash/near-crash safety critical events (SCEs) and their precursors. However, it is unknown whether the SCEs risk can be predicted to inform driver decisions in the medium term (e.g., hours ahead) since the literature has focused on SCE predictions either for a given road segment or for automated breaking applications, i.e., immediately before the event. In this paper, we examine the SCE data generated from 20+ million miles-driven by 496 commercial truck drivers to address three main questions. First, whether SCEs can be predicted using disparate driving-related data sources. Second, if so, what the relative importance of the different predictors examined is. Third, whether the prediction models can be generalized to new drivers and future time periods. We show that SCEs can be predicted 30 min in advance, using machine learning techniques and dependent variables capturing the driver’s characteristics, weather conditions, and day/time categories, where an area under the curve (AUC) up to 76% can be achieved. Moreover, the predictive performance remains relatively stable when tested on new (i.e., not in the training set) drivers and a future two-month time period. Our results can inform dispatching and routing applications, and lead to the development of technological interventions to improve driver safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.