Abstract
The unconfined compressive strength (UCS) of intact rocks is crucial for engineering applications, but traditional laboratory testing is often impractical, especially for historic buildings lacking sufficient core samples. Non-destructive tests like the Schmidt hammer rebound number and compressional wave velocity offer solutions, but correlating these with UCS requires complex mathematical models. This paper introduces a novel approach using an artificial neural network (ANN) to simultaneously correlate UCS with three non-destructive test indexes: Schmidt hammer rebound number, compressional wave velocity, and open-effective porosity. The proposed ANN model outperforms existing methods, providing accurate UCS predictions for various rock types. Contour maps generated from the model offer practical tools for geotechnical and geological engineers, facilitating decision-making in the field and enhancing educational resources. This integrated approach promises to streamline UCS estimation, improving efficiency and accuracy in engineering assessments of intact rock materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.