Abstract

Noise generated by offshore impact pile driving radiates into the air, water, and sediment. Predicting noise levels around the support structures at sea is required to estimate the effects of the noise on marine life. Based on high demands developing renewable energy source, the United States will begin the first pile driving within one to two years. It is necessary to investigate acoustic impact using our previously verified coupled Finite Element (Commercial FE code Abaqus) and Monterey Miami Parabolic Equation (2D MMPE) models [J. Acoust. Soc. Am. 131(4), 3392 (2012)]. In the present study, we developed a new coupled FE-MMPE model for the identification of zone of injury due to offshore impact pile driving. FE analysis produced acoustic pressure outputs on the surface of the pile, which are used as a starting field for a long range 2D MMPE propagation model. It calculates transmission loss for N different azimuthal directions as function of distance from the location of piling with the inputs of corresponding bathymetry and sediment properties. We will present predicted zone of injury by connecting N different distances of equivalent level fishes may get permanent injury due to the first offshore wind farm installation in the United States.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call