Abstract
Tree roots often come in conflict with elements of the built environment, particularly when planted in limited soil locations. For street trees located between roadways and sidewalks, minimum planting width requirements can be calculated to prevent large supporting roots from lifting or growing over paved surfaces. In this study, we used diameter at breast height (DBH) to predict trunk flare diameter for common shade tree species from four different communities in the United States (Milwaukee, Minneapolis, Saint Paul, and Tampa). These predictive models were then used to calculate minimum width requirements to reduce infrastructure damage given the maximum expected DBH measurements for each species based on existing urban forest inventory data in the communities studied. For all ten taxa tested, DBH was a significant predictor of trunk flare diameter (minimum R2 = 0.81), indicating that this commonly used urban forestry measurement can be used to design minimum growing space based on selected species to potentially prevent root and infrastructure conflicts. The methods employed in this paper can be easily replicated by other researchers in order to create guidelines for species and environments not captured in our data set. Alternatively, broader functions for estimating trunk flare based on DBH are provided for species based on natural habitat type (i.e., upland, wetland, variable).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.