Abstract
Chlorine, a commonly used disinfectant in most water supply systems, can combine with organic carbon to form disinfectant byproducts, including carcinogenic trihalomethanes. We used water quality data from 24 monitoring sites within the New York City water supply distribution system, measured between January 2009 and April 2012, to develop an empirical model for predicting total trihalomethane (TTHM) levels. Terms in the model included the following water quality parameters: total organic carbon, pH, water age (reaction time), and water temperature. Reasonable estimates of TTHM levels were achieved with overall of about 0.75, and predicted values on average were within 6 μg L of measured values. A sensitivity analysis indicated that total organic carbon and water age are the most important factors for TTHM formation, followed by water temperature; pH was the least important factor within the boundary conditions of observed water quality. Although never out of compliance in 2011, the TTHM levels in the water supply increased after tropical storms Irene and Lee, with 45% of the samples exceeding the 80 μg L maximum contaminant level in October and November. This increase was explained by changes in water quality parameters, particularly by the increase in total organic carbon concentration during this period. This study demonstrates the use of an empirical model to understand TTHM formative factors and their relative importance in a drinking water supply. This has implications for simulating management scenarios and real-time estimation of TTHMs in water supply systems under changing environmental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.