Abstract

PurposeThis study examined the relationship between structural brain networks and long-term treatment outcomes in patients with panic disorder (PD) using machine learning methods. MethodThe study involved 80 participants (53 PD patients and 27 healthy controls) and included clinical assessments and MRI scans at baseline and after two years (160 MRIs). Patients were categorized based on their response to two-year pharmacotherapy. Brain networks were analyzed using white matter tractography and network-based statistics. ResultsResults showed structural network changes in PD patients, particularly in the extended fear network, including frontal regions, thalamus, and cingulate gyrus. Longitudinal analysis revealed that increased connections to the amygdala, hippocampus, and insula were associated with better treatment response. Conversely, overconnectivity in the amygdala and insula at baseline was associated with poor response, and similar patterns were found in the insula and parieto-occipital cortex related to non-remission. This study found that SVM and CPM could effectively predict treatment outcomes based on network pattern changes in PD. ConclusionsThese findings suggest that monitoring structural connectome changes in limbic and paralimbic regions is critical for understanding PD and tailoring treatment. The study highlights the potential of using personalized biomarkers to develop individualized treatment strategies for PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.