Abstract

Leaves are key factors in the global water exchange cycle. As the primary control interface involved in regulating water loss, understanding the relative influence of leaf morphological and physiological transpiration factors is critical to accurate evapotranspiration predictions. We parameterized a three-dimensional array model, MAESTRA, to establish a link from the leaf to canopy scale and attempted to isolate and understand the interplay among variation in morphological and physiological variables affecting transpiration. When physiological differences were accounted for, differences in leaf width (Lw) among Acer rubrum L. genotypes significantly affected leaf temperature and transpiration under slow to moderate wind velocities. In instances, Lw variation among genotypes resulted in a 25% difference in transpiration. This study demonstrates how simple morphological traits like Lw can provide useful selection criteria for plant breeders to consider in a changing climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.