Abstract

The temporal variation of local pier scour depth is very complex, especially for cases where the bed comprises a sediment mixture. Many semi-empirical models have been proposed to predict the time-dependent local pier scour depth. In this paper, an alternative approach, the support vector regression method (SVR) is used to estimate the temporal variation of pier-scour depth with non-uniform sediments under clear-water conditions. Based on dimensional analyses, the temporal variation of scour depth was modeled as a function of seven dimensionless input parameters, namely flow shallowness (y/Dp), sediment coarseness (Dp/d50), densimetric Froude number (Fd), the difference between the actual and critical densimetric Froude number (Fd − Fdβ), geometric standard deviation of the sediment particle size distribution (σg), pier Froude number (U/gDp) and one of the following three dimensionless time scales (T1 = t/tR1, T2 = t/tR2 and T3 = t/tR3). The SVR model not only estimates the time-dependent scour depth more accurately than conventional regression models, but also provides results that are consistent with the physics of the scouring process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call