Abstract

Ternary eutectic salts composed of MgCl2, NaCl, and KCl, referred to as MNK salts, have recently emerged as promising candidates as high-temperature heat transfer fluids and thermal energy storage media. In this study, we performed classical molecular dynamics (MD) simulations to predict the densities, specific heat capacities, viscosities, and ionic self-diffusivities for MNK salts over a wide temperature range. The impact of LiCl additive on their thermophysical properties was also investigated. To capture the electronic polarization of Cl anions by neighboring cations, we developed a novel shell-model potential using the force-matching method and a dataset of ab initio calculated interatomic forces. Our extensive MD simulations predict structure and properties for pure salts and binary/ternary salt mixtures in the MgCl2-NaCl-KCl-LiCl system in overall good agreement with available experimental and theoretical data, which corroborates the accuracy and reliability of our developed potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call