Abstract
X-ray absorption spectra (XAS) of biradicaloid species are often thought to represent a challenge to theoretical methods. This has led to the testing of recently developed multireference techniques on the XAS of ozone, but reproduction of the experimental spectral profile has proven difficult. We utilize a minimal model consisting of a single configuration state function (CSF) per excited state to model core-level excitations of ozone, with the orbitals of each CSF optimized using the restricted open-shell Kohn-Sham (ROKS) method. This protocol leads to semiquantitative agreement with experimental XAS. In fact, we find that low-lying core-hole excited states in biradicaloids can be approximated with individual CSFs, despite the presence of multireference character in the ground state. We also report that the 1s → π* and 1s → σ* transitions have quite distinct widths for O3. This reveals the importance of sampling over a representative range of geometries from the vibrational ground state for properly assessing the accuracy of electronic structure methods against experiments instead of the popular procedure of uniformly broadening stick spectra at the equilibrium geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.