Abstract

Precise predictions of wind power density play a substantial role in determining the viability of wind energy harnessing. In fact, reliable prediction is particularly useful for operators and investors to offer a secure situation with minimal economic risks. In this paper, a new model based upon ELM (extreme learning machine) is presented to estimate the wind power density. Generally, the two-parameter Weibull function has been normally used and recognized as a reliable method in wind energy estimations for most windy regions. Thus, the required data for training and testing were extracted from two accurate Weibull methods of standard deviation and power density. The validity of the ELM model is verified by comparing its predictions with SVM (Support Vector Machine), ANN (Artificial Neural Network) and GP (Genetic Programming) techniques. The wind powers predicted by all approaches are compared with those calculated using measured data. Based upon simulation results, it is demonstrated that ELM can be utilized effectively in applications of wind power predictions. In a nutshell, the survey results show that the proposed ELM model is suitable and precise to predict wind power density and has much higher performance than the other approaches examined in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.