Abstract

AbstractSeveral published models exist for simulating vertical profiles of pelagic fish eggs, but no one has rigorously assessed their capacity to explain observed variability. In this study, we applied a steady‐state model, with four different formulations for vertical diffusivity, to northern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax) eggs in the California Current region. Vertical mixing profiles, based on wind speed and hydrography, were combined with estimated terminal ascent velocities of the eggs based on measurements of egg buoyancy and size, to simulate the vertical profiles of the eggs. We evaluated model performance with two data sets: (1) vertically stratified tows for both species and (2) paired samples for sardine eggs from 3‐m depth and in vertically integrated tows. We used two criteria: whether the model predicted individual observed vertical profiles (1) as well as the observed mean and (2) better than the observed mean. Model predictions made with the formulation producing the most gradual profile of vertical diffusivity provided the best match to observations from both data sets and for both species. Addition of a random error term to the terminal ascent velocity further improved prediction for anchovy eggs, but not sardine. For the paired data, model prediction of integrated abundance from abundance at 3‐m depth had significantly lower mean square error than prediction based on a linear regression of 3 m on integrated abundance. Our results support the feasibility of using data from the Continuous Underway Fish Egg Sampler quantitatively as well as qualitatively in stock assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.