Abstract
A multi-layer feed-forward artificial neural network has been presented for accurate prediction of the vapor liquid equilibrium (VLE) of CO2+alkanol mixtures. Different types of alkanols namely, 1-propaol, 2-propanol, 1-butanol, 1-pentanol, 2-pentanol, 1-hexanol and 1-heptanol, are used in this study. The proposed network is trained using the Levenberg-Marquardt back propagation algorithm, and the tan-sigmoid activation function is applied to calculate the output values of the neurons of the hidden layers. According to the network’s training, validation and testing results, a six layer neural network is selected as the best architecture. The presented model is very accurate over wide ranges of experimental pressure and temperatures. Comparison of the suggested neural network model with the most important thermodynamic correlations shows that the proposed neuromorphic model outperforms the other available alternatives. The predicted equilibrium pressure and vapor phase CO2 mole fraction are in good agreement with experimental data suggesting the accuracy of the proposed neural network model for process design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.