Abstract

Recent mutational analyses of ligand-gated ion channels (LGICs) have demonstrated a plausible site of anesthetic action within their transmembrane domains. Although there is a consensus that the transmembrane domain is formed from four membrane-spanning segments, the secondary structure of these segments is not known. We utilized 10 state-of-the-art bioinformatics techniques to predict the transmembrane topology of the tetrameric regions within six members of the LGIC family that are relevant to anesthetic action. They are the human forms of the GABA alpha 1 receptor, the glycine alpha 1 receptor, the 5HT3 serotonin receptor, the nicotinic AChR alpha 4 and alpha 7 receptors and the Torpedo nAChR alpha 1 receptor. The algorithms utilized were HMMTOP, TMHMM, TMPred, PHDhtm, DAS, TMFinder, SOSUI, TMAP, MEMSAT and TOPPred2. The resulting predictions were superimposed on to a multiple sequence alignment of the six amino acid sequences created using the CLUSTAL W algorithm. There was a clear statistical consensus for the presence of four alpha helices in those regions experimentally thought to span the membrane. The consensus of 10 topology prediction techniques supports the hypothesis that the transmembrane subunits of the LGICs are tetrameric bundles of alpha helices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.