Abstract

Multiple factors can influence bioavailability, which can make predictions of toxicity in natural systems difficult. The current study examined the potential use of solid-phase microextraction fibers as a matrix-independent approach to predict the toxicity of permethrin to Daphnia magna across various water sources, including a laboratory reconstituted water, two natural waters, and a modified natural water. Water source strongly affected the toxicity of permethrin as well as the concentration-response relationships. Although permethrin concentrations in the water were predictive of toxicity to D. magna for individual water sources, there was no relationship between permethrin concentrations among water sources and mortality. This indicated that compositional differences among water sources can greatly influence toxicity, suggesting that benchmarks established using reconstituted water may be overly conservative for some natural waters. In addition, although permethrin tissue residues were predictive of mortality for individual waters, the correlation among waters was not as clear. Finally, both 48-h and equilibrium-based SPME fiber concentrations adequately predicted toxicity independent of water properties. This demonstrated that bioavailability-based estimates provided a more accurate prediction of toxicity than water concentrations and that SPME fibers could be used in environmental monitoring as a rapid and accurate means of predicting toxicity in natural waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call