Abstract

Total suspended solids (TSS) are a major pollutant that affects waterways all over the world. Predicting the values of TSS is of interest to quality control of wastewater processing. Due to infrequent measurements, time series data for TSS are constructed using influent flow rate and influent carbonaceous bio-chemical oxygen demand (CBOD). We investigated different scenarios of daily average influent CBOD and influent flow rate measured at 15min intervals. Then, we used five data-mining algorithms, i.e., multi-layered perceptron, k-nearest neighbor, multi-variate adaptive regression spline, support vector machine, and random forest, to construct day-ahead, time-series prediction models for TSS. Historical TSS values were used as input parameters to predict current and future values of TSS. A sliding-window approach was used to improve the results of the predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.