Abstract

Predicting follow-up lesions from baseline CT perfusion (CTP) datasets in acute ischemic stroke patients is important for clinical decision making. Deep convolutional networks (DCNs) are assumed to be the current state-of-the-art for this task. However, many DCN classifiers have not been validated against the methods currently used in research (random decision forests, RDF) and clinical routine (Tmax thresholding). Specialized DCNs have even been designed to extract complex temporal features directly from spatiotemporal CTP data instead of using standard perfusion parameter maps. However, the benefits of applying deep learning to source or deconvolved CTP data compared to perfusion parameter maps have not been formally investigated so far. In this work, a modular UNet-based DCN is proposed that separates temporal feature extraction from tissue outcome prediction, allowing for both model validation using perfusion parameter maps as well as end-to-end learning from spatiotemporal CTP data. 145 retrospective datasets comprising baseline CTP imaging, perfusion parameter maps, and follow-up non-contrast CT with manual lesion segmentations were assembled from acute ischemic stroke patients treated with intravenous thrombolysis alone (IV; n = 43) or intra-arterial mechanical thrombectomy (IA; n = 102) with or without combined IV. Using the perfusion parameter maps as input, the proposed DCN (mean Dice: 0.287) outperformed the RDF (0.262) and simple Tmax-thresholding (0.249). The performance of the proposed DCN was approximately equal using features optimized from the deconvolved residual curves (0.286) compared to perfusion parameter maps (0.287), while using features optimized from the source concentration-time curves (0.296) provided the best tissue outcome predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.