Abstract
AbstractModels are available to predict the fire‐resistance ratings of wood‐frame assemblies protected by gypsum board. These models have been developed to predict the performance of assemblies exposed to a standard fire test in which temperatures increase monotonically. In an ongoing effort to model the fire resistance of light‐frame wood floor assemblies, in this study, a number of improvements over past heat transfer models have been made in an attempt to simulate assembly performance in any arbitrary fire exposure. For this purpose, the heat transfer analysis has been coupled with a mass transfer analysis. The calcination of gypsum board and pyrolysis of wood are now modelled using an Arrhenius expression.In order to evaluate the accuracy of the model, a series of cone calorimeter experiments have been conducted in an effort to generate experimental data under well‐defined boundary conditions. Comparisons between test results and the predictions from a one‐dimensional heat and mass transfer analysis are encouraging with excellent agreement in predicting the point at which gypsum board is fully calcinated. A lack of material property data, particularly the permeability of gypsum board, remains a limiting factor in further improvement of the accuracy of the model. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.