Abstract

This paper presents a computationally efficient thermo-fluid model to predict the temperature and flow distribution in an oil-cooled electrical machine with a segmented stator. The Yokeless and Segmented Armature axial flux machine was used as a case study in which a numerical model was set up and validated to within 6% of experimental results. The model was adapted to predict the temperature distribution of the segmented stator of a machine, identifying the hotspot temperatures and their location. Changes to the flow geometry on the stator temperature distribution were investigated. It was shown how by carefully controlling the flow distribution in the stator, the temperature distribution is improved and the hot spot temperature is reduced by 13 K. This benefits the machine by doubling the insulation lifetime or by increasing the current density by approximately 7%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.