Abstract

Interfaces are a type of extended defect which govern the properties of materials. As the nanostructuring of materials becomes more prevalent the impact of interfaces such as grain boundaries (GBs) becomes more important. Computational modelling of GBs is vital to the improvement of our understanding of these defects as it allows us to isolate specific structures and understand resulting properties. The first step to accurately modelling GBs is to generate accurate descriptions of the structures. In this paper, we present low angle mirror tilt GB structures for fluorite structured materials (calcium fluoride and ceria). We compare specific GB structures which are generated computationally to experimentally known structures, wherein we see excellent agreement. The high accuracy of the method which we present for predicting these structures can be used in the future to predict interfaces which have not already been experimentally identified and can also be applied to heterointerfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.