Abstract

The safety of the civil structures could be significantly improved against shock waves and blast loads by using steel concrete steel (SCS) protective walls. A numerical study has been performed to simulate the response of SCS wall subjected to a near-field blast load. A conventional SCS panel subjected to near-field blast load and its structural performance is evaluated in terms of maximum damage and deformation. The simulations performed using ABAQUS\EXPLICIT finite element package and built-in concrete damage plasticity concrete constitutive formulation. The maximum deformation, plastic strain, and failure mode under different loading scenarios have been investigated. The aim of this study is predicting the structural response of the SCS panel with different blast charge and identification of optimum configuration in terms of concrete strength and plate thickness. In the second part of the study, two novel sandwich configurations consisting of a corrugated metal sheet and the concrete core are proposed and compared with the conventional protective walls. The optimum parameters for each structural component are identified using an optimization procedure. Based on this study, using the proposed wall configuration will results in superior performance compared to the conventional walls while the extra cost of fabrication is insignificant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call