Abstract
To develop and externally validate a multiphase computed tomography (CT)-based machine learning (ML) model for staging liver fibrosis (LF) by using whole liver slices. The development dataset comprised 232 patients with pathological analysis for LF, and the test dataset comprised 100 patients from an independent outside institution. Feature extraction was performed based on the precontrast (PCP), arterial (AP), portal vein (PVP) phase, and three-phase CT images. CatBoost was utilized for ML model investigation by using the features with good reproducibility. The diagnostic performance of ML models based on each single- and three-phase CT image was compared with that of radiologists' interpretations, the aminotransferase-to-platelet ratio index, and the fibrosis index based on four factors (FIB-4) by using the receiver operating characteristic curve with the area under the curve (AUC) value. Although the ML model based on three-phase CT image (AUC = 0.65-0.80) achieved higher AUC value than that based on PCP (AUC = 0.56-0.69) and PVP (AUC = 0.51-0.74) in predicting various stage of LF, significant difference was not found. The best CT-based ML model (AUC = 0.65-0.80) outperformed the FIB-4 in differentiating advanced LF and cirrhosis and radiologists' interpretation (AUC = 0.50-0.76) in the diagnosis of significant and advanced LF. All PCP, PVP, and three-phase CT-based ML models can be an acceptable in assessing LF, and the performance of the PCP-based ML model is comparable to that of the enhanced CT image-based ML model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.